您现在的位置是:网站首页> 编程资料编程资料

MySQL索引优化实例分析_Mysql_

2023-05-26 495人已围观

简介 MySQL索引优化实例分析_Mysql_

1.数据准备

#1.建立员工表,并创建name,age,position索引,id为自增主键 CREATE TABLE `employees` (  `id` int(11) NOT NULL AUTO_INCREMENT,  `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',  `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',  `position` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',  `hire_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',  PRIMARY KEY (`id`),  KEY `idx_name_age_position` (`name`,`age`,`position`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=100010 DEFAULT CHARSET=utf8 COMMENT='员工记录表' # 2.前面插入三条数据,并建立employees_min_copy表插入这三条数据 INSERT INTO employees (name,age,`position`,hire_time) VALUES ('LiLei',22,'manager','2021-08-17 21:00:55') ,('HanMeimei',23,'dev','2021-08-17 21:00:55') ,('Lucy',23,'dev','2021-08-17 21:00:55') ; #3.再通过执行计划向表中插入十万条数据 #3.1建立存储过程,往employees表中插入数据(MySQL8.0版本) DELIMITER $$ USE `zhebase`$$ DROP PROCEDURE IF EXISTS `batch_insert_employees`$$ CREATE PROCEDURE `batch_insert_employees`(IN `start_number` BIGINT,IN `counts` BIGINT) BEGIN    DECLARE start_number BIGINT DEFAULT start_number;    DECLARE stop_number BIGINT DEFAULT start_number;    SET stop_number=start_number + counts;    WHILE start_number < stop_number DO        INSERT INTO employees(name,age,position,hire_time) VALUES(CONCAT('zhang',start_number),start_number,'dev',now());        SET start_number=start_number+1;    END WHILE ;    COMMIT; END$$ DELIMITER ; #3.2执行存储过程插入十万条数据 CALL batch_insert_employees(1,100000);

2.实例一

1.联合索引第一个字段用范围不会走索引  

EXPLAIN SELECT * FROM employees WHERE name > 'LiLei' AND age = 22 AND position ='manager';

 原因:MySQL 内部可能觉得第一个字段就用范围,结果集应该很大,还需要回表,回表效率不高,不如直接采用全表扫描 但是我们可以强制走索引

EXPLAIN SELECT * FROM employees force index(idx_name_age_position) WHERE name > 'LiLei' AND age = 22 AND position ='manager';

-- 关闭查询缓存 set global query_cache_size=0; set global query_cache_type=0; -- 执行时间0.321s SELECT * FROM employees WHERE name > 'LiLei'; -- 执行时间0.458s SELECT * FROM employees force index(idx_name_age_position) WHERE name > 'LiLei';

 使用了强制走索引让联合索引第一个字段范围查找也走索引,扫描的行rows看上去也少了点,但是最终查找效率不一定比全表扫描高,因为回表效率不高

对于这种情况,如果可以使用覆盖索引,就使用覆盖索引进行优化 

EXPLAIN SELECT name,age,position FROM employees WHERE name > 'LiLei' AND age = 22 AND position ='manager';

2.in 和 or 在表数据量比较大的情况会走索引,在表记录不多的情况下会选择全表扫描

EXPLAIN SELECT * FROM employees WHERE name in ('LiLei','HanMeimei','Lucy') AND age = 22 AND position ='manager'; #表数据量大走索引,数据量小全表扫描 EXPLAIN SELECT * FROM employees WHERE (name = 'LiLei' or name = 'HanMeimei') AND age = 22 AND position ='manager';

 将十万行数据的employees表复制一份插入几行数据,再进行查询 

发现进行了全表扫描 

3.like xx% 无论数据量多少一般情况都会走索引

EXPLAIN SELECT * FROM employees WHERE name like 'LiLei%' AND age = 22 AND position ='manager';

 MySQL 底层使用索引下推(Index Condition Pushdown,ICP) 来对 like xx%进行优化。

索引下推: 对于辅助的联合索引(idx_name_age_position),通常按照最左前缀原则,SELECT * FROM employees WHERE name like 'LiLei%' AND age = 22 AND position ='manager' 因为在 name 是范围查询,过滤完后,age 和 position 是无序的,后续索引无法使用,只会走name字段索引。

  • MySQL5.6 以前: 先在索引树中匹配 name 是 'LiLei' 开头的索引,然后根据索引下的主键进行回表操作,在主键索引上在匹配 age 和 position
  • MySQL 5.6以后: 引入索引下推,先在索引树种匹配 name 是 'LiLei' 开头的索引,同时将该所与树通有的所有条件字段进行判断,过滤掉不符合条件的记录再回表匹配其他条件及查询整行数据。
  • 优点: 过滤掉不符合条件的记录之后再回表,可以有效的减少回表次数,提高查询效率

MySQL 范围查找为什么没有使用索引下推优化?  可能因为范围查找结果集一般较大,like xx%在大多数情况下,过滤后结果集较小。而结果集大的时候,每次检索出来都要匹配后面的字段,不一定比立即回表要快。但是也不是绝对的,有些时候 Like xx%也不会走索引下推。

3.MySQL如何选择合适的索引?

先来看两条 SQL 语句:

# MySQL直接使用全表扫描 EXPLAIN select * from employees where name > 'a'; # MySQL走索引 EXPLAIN select * from employees where name > 'zzz';

 我们发现第一条 SQL 进行了全表扫描,第二条 SQL 走了索引。对应第一条SQL,MySQL 通过计算执行成本发现走索引成本比全部扫描更高(走索引需要遍历 name 字段,再进行回表操作查出最终数据,比直接查聚簇索引树更慢)。对于这种情况可以使用覆盖索引进行优化。至于 MySQL 如何选择最终索引,可以用 Trace 工具进行查看。但开启trace工具会影响 MySQL 性能,用完之后需立即关闭。

#开启trace set session optimizer_trace="enabled=on",end_markers_in_json=on; #关闭trace set session optimizer_trace="enabled=off"; #使用trace select * from employees where name > 'a' order by position; select * from information_schema.OPTIMIZER_TRACE;

下面是执行后的Trace中的内容:

{  "steps": [    {      #第一阶段:SQL准备阶段,格式化sql      "join_preparation": {        "select#": 1,        "steps": [          {            "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'a') order by `employees`.`position` limit 0,200"          }        ] /* steps */      } /* join_preparation */    },    {      #第二阶段:SQL优化阶段      "join_optimization": {        "select#": 1,        "steps": [          {            #条件处理            "condition_processing": {              "condition": "WHERE",              "original_condition": "(`employees`.`name` > 'a')",              "steps": [                {                  "transformation": "equality_propagation",                  "resulting_condition": "(`employees`.`name` > 'a')"                },                {                  "transformation": "constant_propagation",                  "resulting_condition": "(`employees`.`name` > 'a')"                },                {                  "transformation": "trivial_condition_removal",                  "resulting_condition": "(`employees`.`name` > 'a')"                }              ] /* steps */            } /* condition_processing */          },          {            "substitute_generated_columns": {            } /* substitute_generated_columns */          },          {            #表依赖详情            "table_dependencies": [              {                "table": "`employees`",                "row_may_be_null": false,                "map_bit": 0,                "depends_on_map_bits": [                ] /* depends_on_map_bits */              }            ] /* table_dependencies */          },          {            "ref_optimizer_key_uses": [            ] /* ref_optimizer_key_uses */          },          {            #预估表的访问成本            "rows_estimation": [              {                "table": "`employees`",                "range_analysis": {                  "table_scan": { --全表扫描情况                    "rows": 93205, --扫描行数                    "cost": 9394.9 --查询成本                  } /* table_scan */,                  #查询可能使用的索引                  "potential_range_indexes": [                    {                      "index": "PRIMARY",  --主键索引                      "usable": false, -- 是否使用                      "cause": "not_applicable"                    },                    {                      #辅助索引                      "index": "idx_name_age_position",                      "usable": true,                      "key_parts": [                        "name",                        "age",                        "position",                        "id"                      ] /* key_parts */                    }                  ] /* potential_range_indexes */,                  "setup_range_conditions": [                  ] /* setup_range_conditions */,                  "gro
                
                

-六神源码网